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Abstract—Several data centers adopt fat-tree topologies, where
high bisection bandwidth is achieved by interconnecting com-
modity hardware and by using specific routing solutions.
These solutions, which include protocol implementations and
configurations, are difficult to evaluate and test both for the
density of fat-trees and for the complexity of the protocols. Also,
since most issues show up only when a fault happens, it is
unfeasible to perform such tests in a production environment.
Additionally, the lack of standard testing procedures motivates an
effort in developing solutions for such a critical task. In this paper,
we propose a methodology devised for testing fat-tree routing pro-
tocol implementations. It adopts a wall-clock independent method
to establish metrics, which permits normalizing the results of
different routing protocol implementations independently from
the execution environment. The methodology is implemented by
Sibyl, a software framework developed to perform repeatable
tests on arbitrary fat-tree topologies automatically. Sibyl also
provides a set of tools to analyze the results and investigate
implementation behaviors. We evaluate the methodology and
Sibyl in three use cases. Such use cases witness a wide spectrum
of situations where Sibyl is effective for analyzing, comparing,
developing, and debugging routing protocol implementations.

Index Terms—Routing protocols, Testing, Data center, Fat-tree

I. INTRODUCTION

Massive Scale Data Center (MSDC) architectures have
evolved towards topologies that seek to guarantee a large
bandwidth among all servers. The MSDCs traffic is funda-
mentally East-West (among servers) and does not respond to
the typical statistical multiplexing of the internet, as a conse-
quence of the applications that run in the data center, where
distributed computation and replication are fundamental ele-
ments. Hence, data center design seeks to guarantee constant
bisection bandwidth. This requirement led to the widespread
of fat-trees [1], [2], a particular case of a Clos network [3],
where high bisection bandwidth is achieved by interconnecting
commodity switches. The adoption of fat-trees by several
OTTs [4]-[6], combined with the intrinsic complexity of the
network, the wide variety of routing protocols with hetero-
geneous implementations, and the fact that a good portion
of failures is caused by software bugs [7]-[9], justify the
development of methodologies and tools for assessing routing
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protocol implementations in fat-trees. This paper gives two
main contributions. First, we propose a methodology. Namely,
we developed a wall-clock independent method to establish
metrics, which permits normalizing the results of different
routing protocols and implementations, independently from the
execution environment (i.e., the underlying hardware). Second,
we present Sibyl, an open-source framework that implements
the methodology and that has the following features: (1) it
runs real routing daemon implementations to hunt bugs in the
software; (2) it allows to perform interoperability tests between
different implementations; (3) it allows to test implementations
on real-scale networks since some bugs show up only in large
topologies; (4) it allows to build an automatic testing pipeline
to evaluate implementations and support their development.

Finally, we present three use cases to show the effectiveness
of the methodology and Sibyl. In UCI, we analyze a well-
known BGP (Border Gateway Protocol) implementation. In
UC2, we show how the framework can be exploited to imple-
ment a feature in a new protocol proposal, considering the case
of RIFT (Routing in Fat Trees) [10]. Also, we show how Sibyl
can be exploited for evaluating prototypical implementations
and, as a byproduct, we highlight the potential of RIFT. UC3
focuses on the debugging of a vendor implementation of RIFT.
All the proposed experiments are fully reproducible.

The paper is organized as follows. A description of fat-tree
topologies is in Sec. II. In Sec. III, we describe our method-
ology, and in Sec. IV, we present Sibyl along with our testing
environment. Sec. V shows three different use cases witnessing
a wide spectrum of situations where the methodology and
Sibyl show their effectiveness. Sec. VI is on related work.
Concluding remarks and future work are in Sec. VIL

II. FAT-TREE DATA CENTER TOPOLOGIES

A fat-tree is a hierarchical topology where nodes are as-
signed to levels, and nodes of adjacent levels are connected to
form a tree with redundant links. Since in recent data centers,
the fat-trees have typically three levels [4], [5], we concentrate
on this case. We adopt the terminology used in the RIFT
protocol draft [10]. For a more comprehensive description, we
refer readers to [11] and [12] (and the references therein).

A Leaf is a node at level O that is connected to servers
and has northbound adjacencies with Spines. We denote by
K1 g ar the number of its ports pointing north. A Spine is a
node at level 1. Also called Top of PoD (ToP), it is connected
southbound with Leaves and northbound with ToFs. We denote



by Krop the number of its ports pointing north or south. A
Point of Delivery (PoD) is a set of Leaves that are connected
to the servers, plus a set of Spines fully interconnected to the
Leaves. A Top of Fabric (ToF) is anode at level 2 that provides
inter-PoD communication and has no northbound adjacencies.
A ToF is connected to at least one Spine per PoD. We denote
by R the redundancy factor, i.e., the number of links from a
ToF to a PoD. We assume K;par = Krop = K. Hence,
we denote a fat-tree with a pair (K, R).

There are two types of fat-trees: single plane and multi-
plane. In a single plane topology, each ToF is connected
to all the Spines. This topology has the maximum value of
redundancy factor, with R = K. In a multi-plane topology,
ToFs are partitioned into N = K/R sets (R being a divisor
of K), each with the same number of nodes, called planes.
The Spines of a PoD are partitioned into N sets of R nodes.
All the Spines of the same set are connected to all the ToFs
of the same plane, and vice versa. In this configuration, the
network’s redundancy is reduced to increase the maximum
number of supported PoDs (and hence the number of servers).
Notice that, with R = 1, if a link between a ToF and a Spine
fails, the ToF loses the connectivity to the PoD of that Spine.

III. THE METHODOLOGY

This Section describes the methodology we propose for
evaluating fat-tree data center routing protocol implementa-
tions (in what follows, just implementations). It is based on the
following milestones. 1) Fat-trees have regular topologies. This
allows performing tests focused on specific topology elements
to obtain results with a general value. 2) Performing tests
that measure actual times can be misleading since timings
heavily depend on the used hardware. Also, assuming that
the system clocks of nodes are perfectly synchronized is
not realistic. Hence, we evaluate the implementations being
oblivious as much as possible concerning the actual timings.
3) Routing protocols can be conceptually very different. For
this reason, we adopt a black-box method, disregarding, as
much as possible, the internals of the implementations.
Tests. The methodology includes failure and recovery tests.
Failure-tests induce many types of common faults in data
centers [13], and measure how implementations react to
those faults. Recovery-tests measure how implementations
react when the network is restored. For each failure test,
we: 1) start the fabric, waiting for convergence; 2) cause
the failure; 3) capture all the Protocol Data Units (PDUs)
until protocol convergence. We perform the recovery tests
analogously, focusing on restoring the regular operation. The
methodology only considers single node failures to track
and analyze the basic behaviors of implementations. More
specifically, we consider the ability of an implementation to
converge in the following cases. Node Failure: A single node
failure. We consider the failure of a Leaf, a Spine, and a ToF.
Node Recovery: Return to normal operation when a Leaf,
a Spine, or a ToF is restored after a failure. Link Failure:
A single link failure. We consider failures of a Leaf-Spine
link and a Spine-ToF link. Link Recovery: Return to normal

operation when a Leaf-Spine or a Spine-ToF link is restored
after a failure. Partitioned Fabric: Occurs when a ToF node
is completely severed from access prefixes of an entire PoD
by multiple link failures. The aim is to verify the ability of an
implementation to react to a Partitioned Fabric.

Coordinates of the Analysis. For each test: 1) We check the
Convergence to verify that, when an event occurs, the fabric
reaches the expected state. 2) We measure the Messaging Load
injected into the network. 3) We focus on Locality to verity
how “local” is such an overhead. 4) We focus on the Number
of Rounds used by the implementation to converge. To be
agnostic to the internal operations of the implementations,
Messaging Load, Locality, and Number of Rounds analyses
rely only on the signaling packets captured during the exper-
iments. Such packets have different features. First, they are
either injected into the network as a consequence of an event
(e.g., BGP Update packets) or exchanged independently on
events in the network (e.g., keep-alive packets). To analyze the
reaction to a specific event, the methodology only considers
the packets that carry information related to it. Second, they
may travel on different levels of the network stack (e.g., on
TCP or directly on Ethernet). Lower-level packets that are
useless to track the reaction to a specific event (e.g., TCP
SYNs or ACKs) are not considered.

Convergence. This aspect aims to check that, after an event,
the nodes’ data plane forwarding tables reach the expected
state. If the check fails after a maximum number of attempts,
the test is aborted. Observe that the convergence check can be
implemented in several ways, e.g., dumping the forwarding
tables [14] or using formal verification [6].

Messaging Load. The purpose of this part of the analysis is
to determine if the overhead grows smoothly with respect to
the main features of the topology: the values of K and R,
the number of nodes and interfaces. The methodology adopts
two different metrics to measure the overhead injected by
the protocol implementation. Namely, it counts the packets
originated by a test and computes their aggregate size. In
computing the size, it only considers the protocol payload.
Locality. To evaluate the ability of an implementation to limit
the “blast radius” of a failure or a recovery, the methodology
adopts the following algorithm. First, for each link of the
network, the number of packets received by the interfaces
of that link is computed. Second, a topological distance is
associated with each link of the network, computed as the
distance from the event (failure or recovery). Namely, if the
event involves a node, all its incident links have a topological
distance of (0. If the event involves a link between node
u and node v, where node wu is the lower level, then all
the links incident to wu, including the failed/recovered link,
have topological distance 0. In both cases, for all the other
links, the topological distance is the minimum number of
links to be traversed to reach a link with topological distance
0. Third, the total number of packets received from all the
interfaces having a certain topological distance is computed.
The result is a vector L, where L[i] with ¢ = 0,1,2,3 is the
number of packets captured at distance ¢. To summarize L



into a scalar value (called blast radius), the scalar product is
computed between L and vector W where W[i] = i+ 1 with
i = 0,1,2,3. This gives a larger weight to packets that are
far from the event and allows capturing how the “wave” of
packets originated by an event spreads into the fabric.
Rounds. The way Locality is considered allows to perceive the
“blast radius” of an event but gives incomplete information on
how the above-mentioned wave propagates. Namely, suppose
that the links at a certain topological distance receive a total
amount of m packets, the above-introduced Locality does not
give any information about the number of “rounds” when this
happens: the m packets could be received all at the same time
or in different cycles of waves and “backwashes”.

However, considering the succession of waves and back-
washes, being oblivious as much as possible with respect to
the actual timing is challenging. To do that, the methodology
exploits a node-state graph, which describes how the states of
nodes are synchronized by routing protocol packets.

Suppose to have a directed graph G, related to an experi-
ment, such that a vertex of G is a pair (v;,s;) representing
a node v; of the fabric in a state s;. An edge from a vertex
(vi, ;) to a different vertex (vy,, i) represents the fact that a
packet exiting from node v; when it is in state s; contributes
to change the state of node vy into s. Of course, if after the
experiment the implementation converges, then G is acyclic.
Graph G would give a clear description of the cause-effect
relationships between state changes of nodes. Also, one could
extract several useful information from G: e.g., computing the
number of its vertices, one could estimate the number of state
changes induced by an event. Further, computing the longest
path of G (since G is acyclic, this is doable) would give the
number of rounds an implementation took to converge after
an event: a measure of efficiency that is independent of time.

Unfortunately, computing G requires entering the features
of the protocols and their implementations, something that we
want to avoid as much as possible. Hence, we compute GG
“from outside”, observing the packets exchanged by nodes,
with the following algorithm (see Fig. 1(a)).

Indeed, even if we are oblivious with respect to the global
network time, we can use the local system clock of each node
to order packets sent/received by/from that node. Let n be the
number of nodes of a fabric. For each node v; (i = 1,...,n),
we sort the packets entering or exiting v; according to the
local time they are recorded, obtaining an ordered list A;.
Fig. 1(b) shows the ordered lists that led to the computation
of the graph in Fig. 1(a). We call this type of diagram node-
state timeline. Each list \; is a sequence of points along the
horizontal timeline associated with the corresponding node v;.
Each packet p is represented by: i. a point on the line of the
node that sends p, ii. a point on the line of the node that
receives p, and iii. an arrow connecting those two points. We
call pred(p, A;) the predecessor of packet p in list \;, if any.

We partition each \; into lists of maximal sets of con-
secutive entering or exiting packets, called receiving groups
and sending groups of v;, respectively. Hence, we can write
AN = Ri,lsi,1~-~Ri,hiSi,hi’ where the R@j and the 81'7]'

(y = 1,...,h;) are the receiving groups and the sending
groups of wv;, respectively, and where R;; and S;j, may
be empty. E.g., in Fig. 1(b), tof122 has a receiving group
Reor122,1 containing the first two packets, a sending group
Sior122,1 with the following four packets, and a receiving
group Reor122,2 containing the last two packets. Notice that
Siof122,2 = (). An example of node whose first receiving
group is empty is spinelll that has Repinei11,1 = 0.

We associate with each list A; a sequence of states: (1) If the
first group of A; is a sending group (namely, S; 1) we associate
a state s1 to v;. (2) For each pair R; ; and S; ;, we associate
a state s; to v;. (3) If the last group of ); is a receiving group
(namely, R; ,) we associate a state sp, to v;. As an example,
tof1l22 has two states, s; associated with Rior122,1 and
Stor122,1, and sy associated just with Rioe122.2.

Exploiting the above-defined states, we construct a directed
graph G as follows (see Fig. 1(a)). Each vertex of G is a pair
(v;, s;) where the first element is a node of the fabric and the
second element is a state. For each S; ;, consider each packet
p sent from v; to a node vy of the fabric; G has an edge
((vi, 85), (vk, 84)) Where g is the index of the corresponding
receiving group Ry 4 of vy that contains p (i.e. p € Ry 4). As
an example, the state s; associated with tof122 corresponds
to the vertex (tofl122,s1), that has two incoming edges,
representing the packets of Rior1221, and four outgoing
edges, representing the packets of Sir122,1. Furthermore, the
vertex (tof122, s5) has two incoming edges and no outgoing
edges, since the receiving group Rior122,2 is the last group
in Aiogizz. In Fig. 1(a), (tofl122,s1) and (tofl22,ss)
correspond to the two light-blue vertices labelled with 122.
We call G node-state graph. For the node-state graphs figures,
we follow the above convention, labeling vertices only using
the node number, hiding the type of the node and the state.

At this point, we compute, for each vertex v of G, the
number of rounds as the length of the longest path from a
source of G to v. This is the number of state changes that
led to v. We call it state-round value of v. Also, considering
all the vertices of G, we can compute the maximum of the
state-rounds of the vertices. We call it state-round value of G.
In Fig. 1(a) the length of the longest path, and hence the state-
round value of the graph, is 4. Fig. 1(b) depicts the result of
the algorithm. The label of each packet p is the assigned round
number. Notice that, the maximum round value is 5 since it
is computed considering the number of vertices.

Notice that the steps an implementation takes to converge
and the set of packets the nodes exchange may change
depending on the network parameters, the processing time of
nodes, and the presence of timers in the protocols. So, given
an experiment, the node-state graph and the state-round values
are not univocally defined. This implies that several executions
of the same experiment are recommended to analyze an
implementation behavior.

IV. THE S1BYL FRAMEWORK

Performing the tests described in Sec. III in a physical data
center would be unfeasible due to the costs of the required
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Fig. 1. The reaction of a BGP implementation to leaf101 failure in a (2, 2) topology.

equipment [7] and the impact on the quality of the hosted
services. Moreover, performing the experiments in a physical
fabric would require manually changing the wiring at every
test. This would limit the automation and reproducibility,
leading to a more error-prone testing pipeline.

For these reasons, we use a virtual environment that
gives the flexibility to scale the topology size with limited
constraints and allows to automate the testing stage. The
main drawback is the impossibility of analyzing the actual
wall-clock time since it heavily depends on the virtualization
environment [15]. However, as explained in Sec. III, our
methodology aims to be agnostic from temporal aspects.

Sibyl is developed in order to perform a large number of
experiments on several topology configurations. It exploits the
tools described below to automatically deploy and run the tests
proposed in Sec. III. During each experiment, Sibyl performs
the following steps: 1) generates a topology; 2) deploys a set
of containers and of virtual links representing the topology;
3) begins, in each container, to capture all the generated
PDUs on all the interfaces; 4) starts the routing daemons
on all the nodes with the suitable configuration; 5) performs
the convergence check; 6) performs the required actions for
a specific type of test; 7) performs the convergence check
again; 8) ends the capture of PDUs and gathers the obtained
.pcap files; 9) shutdowns the containers; and 10) performs
the analysis and outputs the results. Notice that the analyses of
Step 10 may be parallelized on all the results at a later stage.
Tools. Sibyl assembles existing tools with new ones.
VFTGen [16] automatically generates and configures virtual
fat-tree topologies. It takes as input the parameters of a fat-tree
and generates as output a directory containing all the files
needed to run the corresponding topology on Kathara.
Kathard [17] is a container-based network emulation system.
It is the only available open-source emulator that supports
Kubernetes as a container orchestration system [18], and it can
leverage on pure L2 networks. Hence, it allows emulating very
large virtual networks in a distributed environment faithfully.
Sibyl RT Calculator is a tool for generating the forwarding
tables of a fat-tree. It takes as input a topology, a protocol,
and a type of test, and returns the routing information for each

node, containing the server farm prefixes and the number of
next hops that are expected to be computed.

Sibyl Agent is a REST Service composed of a controller and
several worker agents. An instance of worker is deployed on
each node of the fat-tree. The controller agent can perform
actions on the nodes through the worker agents.

Sibyl Analyzer is a tool to analyze and plot the results of the
experiments. Its input is the set of .pcap files containing
the packets exchanged by the nodes during an experiment. It
computes the metrics of Sec. III, saving them in a . json file.
It also generates three interactive .html files containing the
topology labeled with the number of packets on each link, the
node-state timeline, and the node-state graph. Sibyl Analyzer
can also be used to analyze data captured on physical nodes.
Execution Environment. We tested Sibyl and its scalability
on the topologies in Fig. 3. To emulate topologies with up
to 320 nodes and ~ 4.5k interfaces (black border boxes),
we used a local virtual cluster composed of 22 VMs, each
with 2-core vVCPUs and 8GB of vVRAM. To emulate larger
topologies (red border boxes), we used the Azure Cloud with
a cluster composed of 160 VMs, each with 4-core vCPUs and
8GB vRAM. In these tests, we emulated topologies with up to
1,280 nodes and 33k interfaces. None of the experiments took
less than 2 mins and more than 2 hours of execution time.

V. EVALUATION

In this section, we illustrate 3 use cases showing the Sibyl
effectiveness. In all use cases, we performed all the tests of
Sec. III on several topologies. Because of space limitations, we
discuss only Leaf-node failures, which are the most disruptive
since they imply the unreachability of a set of prefixes. The
results of the other tests are briefly mentioned. We performed
the described tests 5 times and computed the average of the
results. The full set of results is available at [19].

Tested Implementations. We list here the protocols and the
implementations tested in our use cases.

BGP is the de-facto standard for Clos-based data centers [5],
so considering a use case involving BGP is mandatory. To
work in fat-trees, BGP requires the tweaks defined in [20]
and specified in [21]. We consider the open-source BGP
implementation of FRRouting [22]-[24] (fork of Quagga [25]).
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(b) Packets exchanged by RIFT-Python.

Fig. 2. A (4,4) Leaf-node failure (Lea£101). Each link is labeled with the number of packets captured on it.

RIFT [10] is a fat-tree-specific routing protocol under devel-
opment. RIFT is a hybrid link-state/distance vector protocol
that aims at minimizing configuration and operational com-
plexity. It includes a novel mechanism of automatic disaggre-
gation of prefixes in case of failures. There is only one open-
source implementation, RIFT-Python [26], and one advertised
vendor implementation by Juniper [27]. Since we have access
to both implementations, we include them in our evaluation,
using the Zero Touch Provisioning configuration mode.
UC1: An analysis of a well-known BGP implementation
(FRRouting BGP). We first analyze the FRRouting BGP
implementation, performing the tests on all the topologies in
Fig. 3. The metrics were only computed on the Update packets,
discarding keep-alives and all the TCP acknowledgments.

Fig. 3 shows the results. The x-axis represents R and the
y-axis represents K. The color intensity of the blue heatmap
in the background is proportional to the number of nodes in
a topology with the corresponding K and R.

Messaging Load. Fig. 2(a) shows that the number of packets
captured on each link in a (4,4) topology is 2. Analogous
results have been obtained in all the other topologies. Fig. 3
confirms that, from the Messaging Load coordinate, the im-
plementation has good scalability since it does not manifest
any performance degradation varying K and R. Moreover, we
found that the number of packets exchanged by nodes is not
affected by the number of nodes in the network, but it only
depends on the number of interfaces of each node.

Locality. As stated in the Messaging Load analysis, the BGP
implementation floods 2 packets on all links, affecting all the
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Fig. 3. FRRouting BGP analysis in Leaf-node failure tests.

nodes (Fig. 2(a)). First, BGP does not contain an event locally,
spreading the information to the entire fabric. Second, the
number of packets traversing a link is constant.

Rounds. Fig. 3 shows the number of state-rounds in the
node-state graph for each topology, highlighting that this
implementation has a very stable behavior, with a value of
4 on all the topologies. Probably, the steadiness of the results
is influenced by the regularity of fat-trees and the virtual
environment, where latency is negligible.

Comparable results are obtained in the other type of tests
(see [19]), demonstrating the stability of FRRouting BGP.

In conclusion, UC1 confirms that all the devised metrics
give a different point of view that can be exploited for
evaluating implementations. Also, tests on larger topologies
prove that Sibyl can be useful for testing in virtual MSDCs.
UC2: Working on the PoC of a new routing protocol
(RIFT-Python). UC2 shows how Sibyl can be used to support
the implementation of new features and to evaluate prototypes.

We focus on RIFT-Python [26]. We found that it has critical
scalability issues, converging only on topologies up to (6, 3).
The reason is that RIFT-Python has been developed to check
the correctness of the IETF draft without having scalability as
a goal. Second, we found that RIFT-Python was missing the
negative disaggregation feature, one of the main novelties of
RIFT, needed to handle failures in multi-planes (for details,
refer to [10]). So, we implemented it, building an integration
testing pipeline as follows: 1) we selected the scenarios where
the negative disaggregation is needed, e.g., partitioned fabric;
2) we tested code changes in the above scenarios; 3) we
analyzed the node-state timeline to verify the interactions
between nodes and the expected properties of the node-state
graph, to confirm that changes did not cause bugs.

As a byproduct, we analyzed how RIFT performs against the
BGP implementation tested in UC1 on the topologies where
RIFT-Python converges. The comparison is fair since our met-
rics do not take into account temporal-tied aspects, allowing
normalization of the results that enable the comparison of
implementations that are quite different from each other.

The analysis only considers TIEs (Topology Information
Element) packets, discarding LIEs (Link Information Ele-
ment), TIDEs (Topology Information Description Element),
and TIREs (Topology Information Request Element), since
they are periodic. We have that, even if it is a prototypical
implementation, RIFT-Python exhibits good results, especially



in terms of packet number and blast radius (see Fig. 2(b)),
showing the protocol potential. However, there is performance
degradation, as the topology scales up, that cause a significant
jump between the values obtained for (2,2) and (6, 6) topolo-
gies. This happens in the state-round values that range from
3.4 on (2,2) to 13.8 on (6,6). Theoretically, RIFT should
perform the same operations, generating the same state-round
value. Detailed results can be found at [19].

In conclusion, the use case shows that Sibyl is a valid
support during the development and that the methodology can
also be exploited to evaluate prototypical implementations.
UC3: Checking a vendor implementation (cRPD-RIFT).
This use case proves that Sibyl can be used to find inefficien-
cies and bugs in production-grade implementations. In partic-
ular, we analyzed the RIFT implementation by Juniper [27],
looking for anomalies that are not detected by unit tests. We
had at disposal only the containerized implementation, called
cRPD-RIFT, with no chance to inspect the source code.

Usually, when an inefficiency or a bug is detected, the
root-cause analysis is done by examining logs, either manually
or automatically. In large fat-trees, this could result in an
error-prone task since information coming from all the nodes
should be integrated to get a “global view” of the network
interactions. Instead, the node-state graph already provides
this “global view”, resulting in a valuable support during
debugging regarding the standard procedures. For example,
we spotted a flooding inefficiency by analyzing a Leaf-node
failure in a (2,2) topology. Analyzing the graph in Fig. 4(a),
it is easy to notice a repeated exchange of messages between
Leaf 102 and Spine 111. This is evidence of a possible inef-
ficiency of the flooding mechanism. Going deeper, analyzing
the edges (labeled in Fig. 4(a)) between the two nodes, we
found some packets with the same sequence number that are
bounced by Leaf 102 to Spine 111, and vice versa. The
vendor confirmed the presence of the inefficiency and fixed
it. Fig. 4(b) shows the graph of the fixed version.

VI. RELATED WORK

Network control plane debugging may be performed using
two main approaches: model-based verification and emulation-
based testing. Several network control-plane verification sys-
tems have been developed. The interested reader can exam-
ine [28] for an exhaustive survey on network verification and
testing with formal methods. Nevertheless, none of these tools
can consider the impact of software bugs since they perform
static configuration analysis and assume correct, bug-free
implementations. Bugs have a non-negligible impact on data
center failures; e.g., in [9] it is shown that 12% of failures in
Facebook data centers are due to software or firmware bugs.

On the other hand, in emulation-based testing, network
devices run unmodified network firmware, and therefore they
are exposed to real software bugs. CrystalNet [7], proposed
by Microsoft, highlights the need for a system to test and
verify large-scale data center networks, and they leverage on
emulation, which guarantees the execution of real routing dae-
mons, scaling up like a real production network. Our approach

(2) (b)

Fig. 4. ¢cRPD-RIFT node-state graphs for a Leaf-node failure on (2, 2). (a) A
flooding inefficiency. Edges representing packets involved in the inefficiency
are labeled with the corresponding sequence numbers. (b) After the fix.

has similarities with CrystalNet, building an emulation facility
for real implementation testing. However, CrystalNet does not
propose any methodology to evaluate protocol implementa-
tions. Also, it is mainly designed to validate the Microsoft
Azure network configurations before applying them in the
production environment. Finally, it is not open-source.

VII. CONCLUSIONS AND FUTURE WORK

Currently, there aren’t standard methodologies and tools for
testing data center routing protocol implementations that do
not depend on the wall-clock time, the execution environment,
or the implementation internals. In this paper, we addressed
this issue, presenting a methodology targeted to fat-trees, and
Sibyl, a framework providing a flexible testing environment.

Additionally, Sibyl may support network management deci-
sions, enabling to verify network configurations and automa-
tion, and to test management response to network events.

We evaluated the methodology and Sibyl, proving their
effectiveness. The evaluation: (i) confirmed the stable behavior
and the good scalability of the FRRouting BGP implementa-
tion; (i) highlighted the usability of Sibyl for implementing
protocol features; (iii) showed the potentiality of RIFT, even if
the evaluated implementation is a prototype; (iv) proved that
Sibyl could be useful during development and debugging.

Future works could concern the extension of the method-
ology and Sibyl to support different topologies (e.g., Jel-
lyfish [29], BCube [30]) and routing solutions (e.g., SDN
and programmable switches). Further, the methodology may
consider tests involving multiple node and link failures.

Moreover, the analysis on the node-state graph and the
node-state timeline could be extended by exploiting distributed
systems theory [31] to verify formal properties.
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