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Abstract— Datacenters are a critical part of the Internet
infrastructure as they guarantee efficient deployment of a wide
range of services. Since a considerable amount of datacenter
failures is caused by software bugs and configuration errors,
the management and testing of these networks is a crucial
task. In this field, emulation-based digital twins have proven
their effectiveness. To faithfully emulate the typical three layers
hierarchy, composed of physical servers, virtual machines, and
containers, the support for nested virtualization is a fundamental
requirement. Further, the emulation of hyper-scale datacenters
needs to leverage on horizontal scaling over a cluster of nodes.
Existing container-based proposals do not meet both require-
ments. On the contrary, existing VM-based proposals meet such
requirements, but they need complex configurations and high
resource demands. We propose a container-based framework to
faithfully emulate datacenters. This is a fundamental building
block for designing datacenter digital twins, that would allow
testing of real software implementations in a lightweight, scalable,
and easily configurable environment.

Index Terms—Datacenters, Network Testing, Nested Virtual-
ization, Digital Twins

I. INTRODUCTION

Nowadays, due to the exponential growth in the volume
of data to be handled, cloud providers were forced to scale
their infrastructures to global networks of warehouse-sized
datacenters (DCs). This sudden growth also came with several
management difficulties. Cloud providers usually host differ-
ent services belonging to different customers in a complex
virtualized environment, implementing a virtual network on
top of the physical hosting layer. Furthermore, management
operations such as deployment, service migration, and version
updating must minimally impact the production environment.

In the scope of DC testing and management, digital twins
are an emerging trend to support such operations, and have
proven effective for testing both the physical and software en-
vironment. A digital twin (DT) of a DC can be used to simplify
management operations by reproducing, or even anticipating
through simulations, events happening in the physical coun-
terpart. However, simulation-based systems cannot account for
the real software running in the infrastructure. In fact, even if
simulation allows to model all the system’s aspects, including
physical ones, it assumes a bug-free environment, and can only

© 2023 IEEE. Personal use of this material is permitted. Permission
from IEEE must be obtained for all other uses, in any current or future
media, including reprinting/republishing this material for advertising
or promotional purposes, creating new collective works, for resale or
redistribution to servers or lists, or reuse of any copyrighted component
of this work in other works.

assess correct execution and expected error handling. Several
Over-The-Tops (OTTs) state that a considerable amount of
failures in their DCs is caused by software bugs [1]–[3], that
usually cause million-dollar losses [4]. To mitigate unexpected
outages, faithful emulation is needed. Network emulators
allow to run real software such as routing daemons, network
functions and services, making it possible to test software
behaviour before it is deployed in the production environment.
Nested network emulation is a crucial paradigm to faithfully
emulate a DC. In fact, a server in a DC has typically two layers
of virtualization: the first composed of several virtual machines
(VMs), while the second comprises applications running in
such VMs (usually containers). To faithfully reproduce the
real behaviour of this environment, it is important that such
layers are kept as-is in the emulated counterpart.

In order to create a faithful DT of a DC, a network
emulator should (i) allow the execution of real software
(including all nested services) through nested virtualization,
(ii) be lightweight and scalable, and (iii) be easy to configure.
Nowadays, there are no such solutions available in the litera-
ture. In this paper, we propose an open-source container-based
framework to faithfully emulate DCs by supporting nested
virtualization. The framework can support the creation of
emulation-based DTs, satisfying all the above requirements.

II. MOTIVATIONS AND RELATED WORK

In this Section, we expose several motivations and related
work supporting the need of fully emulated digital twins.
Manage and test a datacenter is difficult and digital
twins are effective. DCs’ management and testing is a defiant
task. Common characteristics of DCs include a warehouse-size
dense network topology, the presence of heterogeneous ser-
vices and technologies, and a massive exploitation of vir-
tualization. In literature, DTs have been proven effective to
accomplish these tasks [1], [5].
Simulation-based systems cannot test real software im-
plementations. Simulation allows to cover all the system’s
aspects, including physical ones, by creating a model of the
system and the operations it can perform. There are several
proposals that leverage simulation to create a DT of a DC
network. Such systems allow to model the physical environ-
ment (e.g., energy costs monitoring or cooling simulations)
for planning purposes, or to test network configurations using
formal verification. As an example, NetGraph [5] is a system
for creating a DC’s DT, by parsing real network configuration



files. However simulation, assuming a bug-free environment,
is unsuitable for testing real software.
Emulation-based systems are suitable for testing real
software implementations. Emulation aims at accurately re-
produce the behaviour of a system, running its real software
implementation. In computer networks, emulation environ-
ments are often based on virtualization. This allows to obtain
an isolated environment that can be exploited to test software
implementations. Generally, it is possible to distinguish two
types of virtualization: full virtualization, that leverages VMs
and comprises hardware emulation, and OS-level virtualiza-
tion, that is based on containers and only virtualizes code,
runtimes, system tools, system libraries and settings.
Emulators need nested virtualization to faithfully re-
produce the datacenter infrastructure. Real DC networks
typically have at least two layers of virtualization: the first
layer is composed of VMs while the second layer usually
consists in containers running microservices and applications.
Common DCs’ software stacks (e.g., orchestrators) assume to
operate in this layered architecture. Hence, in order to test
and support these applications, it is important to reproduce
the infrastructure as-is. Thereby, a minimum of three virtual-
ized layers are needed: the first one for physical hosts, and
two nested layers for the virtualized DC structure emulation
(i.e., VMs and containers). Nested emulation is then crucial to
faithfully emulate datacenters.
VM-based digital twins are computationally heavy and
difficult to configure. VMs are a virtualization paradigm
that can be exploited to create DTs. Despite they are able
to fully emulate a device, including its hardware, deploying
thousands of VMs involves such a memory overhead that
makes it costly to scale up [6]. Moreover, VMs are usually
more difficult to configure compared to containers. Many use
cases do not require such complexities (e.g., network and
software configuration testing). CrystalNet [1] is a VM-based
network emulator developed by Microsoft for creating cloud-
scaled DC’s DTs. It leverages the Azure cloud infrastructure to
deploy a sufficient number of VMs to reproduce the physical
network. Since CrystalNet uses the Azure APIs, it is bounded
to this specific execution environment. Moreover, being based
on VMs, it requires a great amount of resources.
Existing container-based emulators are not suitable to
create a hyper-scale datacenter digital twin. Container-
based emulators are clearly lighter than VM-based ones.
Deploying a container brings faster startup times compared
to VMs. In the literature, several examples of container-
based emulators are present [7]–[10]. Although some of them
can scale up to relatively large network topologies, most of
them are limited by not supporting nested virtualization [7]–
[9]. NestedNet [10], is the only emulator designed to create
nested virtual networks. However, it cannot go further the first
nested layer. Also, it is not suitable for the emulation of large
networks since it is does not run on a distributed environment.
In the remaining Sections, we address the following question:
“Can we design a container-based framework that can faith-
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Fig. 1. Bind-mounting the local Docker repository in nested containers.

fully emulate the three-layers structure of hyper-scale DCs to
support DTs’ deployment?”

III. ACHIEVING DESIGN GOALS

To obtain a framework suitable for faithfully testing DC
infrastructures, our implementation aims to achieve the fol-
lowing goals: (a) Scalability; (b) Nested virtualization. We
develop such a framework using open-source, state-of-the-
art technologies. We choose Kathará [7] since it is able
to scale up to thousands of virtual devices, thanks to the
Megalos [11] extension. Hence, we only need to extend the
Kathará network emulator to support nested virtualization in
order to meet all the required goals. As Kathará devices
are emulated through Docker, it is possible to leverage the
Docker-in-Docker (DinD) [12] image, that allows to run the
Docker Engine into a Docker container. Since DinD was
originally designed to help with the development of Docker
itself, the Docker daemon inside a DinD container is agnos-
tic with respect to its execution environment. Each Docker
container uses a specific Docker image, that is a read-only
template with instructions for creating a Docker container,
that can include several elements (e.g., configuration files and
libraries). When a container is created and its associated image
is not locally found, the Docker daemon downloads it from
a remote repository, and stores it locally. By default, each
container that runs the DinD image has its own filesystem that
is not shared with any other container or with the host. This
means that each Docker daemon inside a container created
with DinD tries to download from the remote repository
images not found locally, storing them inside its filesystem.
This procedure has two drawbacks: (i) the startup time heavily
depends on the Internet connection speed; (ii) the same image
is re-downloaded several times.

To overcome these limitations, we modify the DinD image
to automatically load the Docker images from the host local
repository into each device of the hierarchy. In this way, when
a device is started, the Docker image is already found locally
and it is not re-downloaded. In particular, we build a Docker
image, called internal, which contains the Docker daemon,
the Docker images to pre-load (in this case, kathara/frr),
and the Kathará network emulator. Then, we craft a wrapper
Docker image (kathara/nested) that, during the building
phase, copies the layers of internal into the local Docker
image repository folder. The result is that when a container
runs the kathara/nested image, it already contains the
software stack and the pre-loaded Docker images installed in



internal, and the internal image itself. This solution
allows a single level nesting similar to DinD, with the addition
of the pre-loaded images that avoids to re-download them.
In order to support multiple nesting levels without the same
overheads described above, we modified Kathará as follows.
When Kathará deploys a device D2 inside D1 (with Di being a
device at depth i) running the kathara/nested image, D2

bind-mounts the Docker image repository folder of D1. This
means that the Docker daemon inside D2 can directly use the
Docker images of D1, including the internal image itself.
Hence, each device Dn (with n > 2) that deploys a container
with nested virtualization enabled, uses the internal image
and bind-mounts the image repository folder of Dn−1. We
illustrate an example of this procedure in Fig. 1.

Notice that bind-mounting the parent Docker image reposi-
tory presents security issues. For example, if a container in the
hierarchy makes changes on one of the pre-loaded images, all
the devices Dn (with n >= 2) are affected by such changes.
However, the goal of this system is to only provide an iso-
lated environment to faithfully reproduce a DC infrastructure
for testing purposes, so there are no malicious accesses to
this virtual network. Moreover, the possible changes are not
reflected on the host filesystem, since such changes can only
affect the volatile Docker image repository folder of the device
D1 running the kathara/nested image.

For more details on the procedure for creating the
kathara/nested image and on how customize it, see [13].

IV. EVALUATION

In this Section, we show and discuss the performance
of our framework. Source code and scripts to perform the
experiments are available at [14].

Our evaluation is based on two experiments. The first
aims at measuring the performance overhead introduced by
the nested virtualization with different depths. The second
experiment shows the startup times needed for deploying
different-sized fat-tree topologies, which are commonly used
in DCs [15]. To configure the fat-trees, we modified VFT-
Gen [16], a tool for deploying virtual fat-tree topologies
leveraging on Kathará. We add the support to the nested
virtualization, including the possibility of deploying VMs
inside servers, and containers inside VMs.
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Fig. 2. Startup time comparison among: a flat network, the
kathara/nested image, and the official DinD image.
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than the minimum memory assigned by Kubernetes.

Fig. 3. Startup time (a) and startup memory usage (b) needed for deploying
different fat-tree topologies. The three layers (16, 16) has overall 80 routers,
256 servers, 2560 VMs and 25600 containers.

In the following we answer three questions: Q1) “What is the
overhead introduced by the nested virtualization?” Q2) “How
much time is needed for deploying a DC?” Q3) “How much
memory is needed to emulate a DC?”
Q1) Microbenchmark: container-based nested virtualiza-
tion introduces a reasonable overhead. One may wonder
if container-based nested virtualization introduces significant
overheads with respect to flat networks. To demonstrate the
opposite, we tested several flat networks versus nested chains,
both composed of a variable number k of devices. We define a
nested chain as a network scenario composed of a hierarchy of
k devices (called D1, . . . ,Dk). In all hierarchies, D1 is located
into the physical host, while device Di+1 (i = 1, . . . , k − 1)
is located into device Di. We performed each experiment five
times, using a commodity workstation equipped with Intel®
Core-i5™ 10600 CPU and 16 GB of RAM. In Fig. 2, the x-
axis represents the number k of devices (or the depth of the k-
th chain), the y-axis shows the startup time of the network sce-
nario in seconds (using a log-scale). Although, network nesting
introduces an exponential (linear in the log-scale) overhead
with respect to the startup time of the flat network scenario,
in real-world scenarios, where nesting levels are only a few, the
absolute value of the overhead is acceptable. Moreover, such
overhead is much lower than the one introduced by the startup
of a single VM in public clouds (more than 30 secs) [17].
These data highlight the advantages of adopting our framework
to recreate the servers-VMs-containers hierarchy in DCs’ DTs.
Q1) Microbenchmark: kathara/nested has faster
startup times with respect to standard DinD. To demon-
strate that pre-loading Docker images speeds up the deploy-



ment time, we used the same nested chains and the same
execution environment of the experiment above. As shown in
Fig. 2, the kathara/nested image (blue curve), combined
with the bind-mount of the parent Docker images, retains
better startup times with respect to the official DinD [12] (red
curve), that must re-download the required images at each
level of the chain. The overhead of our solution is clearly
highlighted in the 1-st, 2-nd, and 3-rd chains. We have that
between the 1-st and the 2-nd chain, the overhead is introduced
by loading the kathara/nested image in D1, and by
the first bind-mount of the D1 image repository in D2. The
additional overhead between the 2-nd and 3-rd chain is caused
by the first bind-mount in a different image (internal)
of the D2 image repository in D3. From the 4-th chain, the
overhead is negligible since D4 bind-mounts the D3 image
repository folder, which has already been bind-mounted for
the internal image. In conclusion, our technique shows
much better startup times with respect to the startup time of a
standard VM in the cloud or of a nested container using DinD.

Q2) Deploy a fully-fledged DC in three minutes. In this
experiment we show how our framework can deploy re-
al-world-size fat-trees in a few minutes. Following the termi-
nology presented in [16], [18], the fat-tree topology has two
fundamental parameters: K, that is the number of north/south
switch ports, and R, the redundancy factor (i.e., the number
of links between a node in the aggregation layer and the top
nodes of a PoD). We performed the experiments for all the
even values of K in the range 2–16, always setting K = R.
All the experiments are performed on a local virtual cluster
composed of 21 VMs, each with 4-core vCPUs and 8GB of
vRAM. Fig. 3(a) shows the results. The green curve represents
the startup time of different fat-tree topologies without nested
virtualization (only physical devices are emulated). The blue
curve represents the startup time with one level of nesting,
deploying 10 devices, representing VMs, for each server. The
red curve represents the startup time with two level of nesting,
also deploying 10 containers for each emulated VM in the first
nested layer. The results confirm that the overhead introduced
by the three layers of virtualization is minimal, since the three
curves are almost overlapped. Furthermore, the overall startup
time is low, since our framework allows to deploy a (16, 16)
fat-tree (composed of 80 routers, 256 servers, 2.56k VMs and
25.6k containers) in about 180 seconds, which is the time
needed for deploying about 6 VMs on common clouds [17].

Q3) Minimal startup memory footprint. Fig. 3(b) illustrates
the average memory usage of a VM that compose the cluster
for the same experiments performed in Fig. 3(a). Notice that
the deployed topologies have the Border Gateway Protocol
(BGP) configured as routing protocol, but do not run any
other service. For this reason, the three curves are completely
overlapped since the memory requirements for running the
nested containers is less than the minimum amount of memory
assigned by Kubernetes to each emulated device at level 1.
Moreover, the used memory is less than the 0.5% of the worker
total memory in the (16, 16) topology, leaving enough space

for running services inside the virtual network.

V. CONCLUSIONS

We propose a framework for container-based nested vir-
tualization, which is fundamental to faithfully emulate the
servers-VMs-containers hierarchy. We showed that our frame-
work allows having a real-life-size datacenter up and running
in a few minutes, with acceptable resource requirements. We
believe that our framework can be exploited in many use
cases which require to test real software implementations in an
isolated virtual environment. It provides a friendly language
that can support the creation of lightweight digital twins,
allowing to quickly test software implementations, network
configurations, and interactions between services.

We leave as future work to extend the framework by creating
a layer of connection between the emulated datacenter and its
physical counterpart.
Acknowledgement. This work has received funding from
the European Research Council (ERC) under the European
Union’s Horizon 2020 research and innovation programme
(grant agreement No. 770889).

REFERENCES

[1] H. Liu, Y. Zhu, J. Padhye, J. Cao, S. Tallapragada, N. Lopes, A. Ry-
balchenko, G. Lu, and L. Yuan, “CrystalNet: Faithfully Emulating Large
Production Networks,” in SOSP ’17 Proceedings of the 26th Symposium
on Operating Systems Principles. ACM, October 2017, pp. 599–613.

[2] X. Wu, D. Turner, C.-C. Chen, D. A. Maltz, X. Yang, L. Yuan, and
M. Zhang, “NetPilot: Automating Datacenter Network Failure Mitiga-
tion,” SIGCOMM Comput. Commun. Rev., vol. 42, no. 4, aug 2012.

[3] J. Meza, T. Xu, K. Veeraraghavan, and O. Mutlu, “A Large Scale Study
of Data Center Network Reliability,” in Proceedings of the Internet
Measurement Conference 2018, ser. IMC ’18. New York, NY, USA:
Association for Computing Machinery, 2018, p. 393–407.

[4] Uptime Institute, “Uptime Institute Global Data Center Survey Re-
sults 2022 ,” 2022, https://uptimeinstitute.com/resources/research-and-
reports/uptime-institute-global-data-center-survey-results-2022.

[5] H. Hong, Q. Wu, F. Dong, W. Song, R. Sun, T. Han, C. Zhou, and
H. Yang, “NetGraph: An Intelligent Operated Digital Twin Platform for
Data Center Networks,” in Proceedings of the ACM SIGCOMM 2021
Workshop on Network-Application Integration, ser. NAI’21. Association
for Computing Machinery, 2021, p. 26–32.

[6] A. M. Potdar, N. D G, S. Kengond, and M. M. Mulla, “Performance
Evaluation of Docker Container and Virtual Machine,” Procedia Com-
puter Science, vol. 171, pp. 1419–1428, 2020, third International Con-
ference on Computing and Network Communications (CoCoNet’19).

[7] M. Scazzariello, L. Ariemma, and T. Caiazzi, “Kathará: A Lightweight
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